RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2019

FIRST YEAR (BATCH 2018-21)

MATHEMATICS (Honours)

: 16/05/2019 : 11.00 am – 3.00 pm Time

Date

[Use a separate Answer Book for each Group]

Paper : II

Group - A

Answer <u>any five</u> questions from <u>Question Nos. 1 to 8</u>:

If $(1+x)^n = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ (n be a positive integer), prove that 1.

 $a_0 + a_4 + a_8 + \dots = 2^{n-2} + 2^{\frac{n}{2}-1} \cos \frac{n\pi}{4}$.

- Find the general values and the principal value of $(-1)^{\sqrt{2}}$. 2.
- If a, b, c be positive real numbers such that the sum of any two is greater than the third, then 3. a) prove that $a^2yz + b^2zx + c^2xy \le 0$ for all real x, y, z such that x + y + z = 0. (3)

b) If n be a positive integer >1, prove that
$$\left(\frac{2n+1}{3}\right)^{\frac{n(n+1)}{2}} > 1 \cdot 2^2 \cdot 3^3 \cdot \dots \cdot n^n > \left(\frac{n+1}{2}\right)^{\frac{n(n+1)}{2}}$$
. (2)

- a) Show that the maximum value of $(4-x)^3(2+x)^6$ is 2^{15} . 4.
 - b) Show that the minimum value of $\frac{(5+x)(14+x)}{2+x}$ is 27. (3)
- Solve the equation $x^4 x^3 + 2x^2 x + 1 = 0$ which has four distinct roots of equal moduli. 5.
- If α, β, γ are the roots of $x^3 + qx + r = 0$ $(r \neq 0)$, find the value of 6.

i)
$$\sum \frac{\alpha^2}{\beta \gamma}$$
 and ii) $\sum \frac{1}{(\alpha + \beta)^2}$.

- Solve the equation $x^5 1 = 0$. Deduce the values of $\cos \frac{\pi}{5}$ and $\cos \frac{2\pi}{5}$. 7.
- Solve the equation: $x^3 15x^2 33x + 847 = 0$ by Cardan's method. 8.

Answer <u>any five</u> questions from <u>Question Nos. 9 to 16</u>:

9. a) Let $\{K_n\}_n$ be a sequence of non empty compact such that sets in \mathbb{R} $K_1 \supseteq K_2 \supseteq K_3 \supseteq ... \supseteq K_n \supseteq ...$ Prove that there exist at least one point $x \in \mathbb{R}$ such that $x \in K_n \quad \forall n$. (4)

b) Find an infinite collection $\{K_n\}_n$ of compact sets in \mathbb{R} such that the union $\bigcup K_n$ is not compact. (1)

- 10. a) Show that $[2,4]\setminus\{3\}$ is not compact.
 - b) If K is a compact subset of \mathbb{R} then show that K is bounded.

(3+2)

(2)

[5×5]

Full Marks: 100

[5×5]

(2)

(3)

- 11. Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Let $g:[a,b] \to \mathbb{R}$ be defined by g(a) = f(a) and $g(x) = \max\{f(t): t \in [a,x]\}$ for $a < x \le b$. Show that g is continuous on [a, b].
- 12. a) If $f: A \to \mathbb{R}$ is uniformly continuous on a subset A of \mathbb{R} and if $\{x_n\}_n$ is a Cauchy sequence in A, then show that $\{f(x_n)\}_n$ is a Cauchy sequence in \mathbb{R} . (3)

b) If $f: A \to \mathbb{R}$ is a Lipschitz function, then show that f is uniformly continuous on A. (2)

- 13. Define an interval in \mathbb{R} . Let *I* be an interval in \mathbb{R} and $f: I \to \mathbb{R}$ be a function such that f' exist and is bounded on *I*. Prove that f is uniformly continuous on *I*. (1+4)
- 14. Suppose nth derivative of a function f exists finitely in a closed interval [a, a+h]. Then show that there exist a $\theta \in (0,1)$, satisfying the relation

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{n-1}(a) + \frac{h^n}{n!}f^n(a+\theta h) .$$

15. a) Test the convergence of the series :

$$\frac{1}{2} \cdot \frac{1}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{1}{7} + \dots$$
(4)

- b) State Cauchy's condensation test.
- 16. State Riemann rearrangement theorem on infinite series. Find a rearrangement of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ that is divergent.
 (1+4)

Group - B

Answer any two questions from Question Nos. 17 to 19:

- 17. a) On ℝⁿ, define two operations by α⊕β=α-β and c ⋅ α = -cα for any α, β∈ℝⁿ and c∈ℝ, where the operations on the right are the usual ones. Which of the axioms for a vector space are satisfied by (ℝⁿ,⊕, ·) ?
 - b) Show that the set of vectors $B = \{1, 1+x, 1+x+x^2\}$ is a basis for P_3 (vector space of dim 3). (5)
- 18. Determine if the following sets are subspaces of \mathbb{R}^3 , under the operations of addition and scalar multiplication defined component-wise. Justify your answers.

a)
$$W = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2\}$$
. (4)

b)
$$W = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 - 7a_2 + a_3 = 0\}$$
 (4)

c)
$$W = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = a_3 + 2\}$$
 (2)

19. a) Investigate for what values of λ and μ , the simultaneous equations

$$x + y + z = 6$$
$$x + 2y + 3z = 10$$
$$x + 2y + \lambda z = \mu$$

have (i) no solutions (ii) unique solution (iii) infinite number of solutions . (4+4)

b) If A is skew symmetric, prove that $(I - A)(I + A)^{-1}$ is orthogonal. (2)

(1)

[2×10]

Answer any two questions from Question No. 20 to 22:

- 20. a) Define i) convex hull ii) convex polyhedron iii) supporting hyperplane and separating hyperplane, with example. (8)
 - b) Prove that a B.F.S to a L.P.P corresponds to an extreme point of the convex set of F.S. (4)
- 21. a) $x_1=2$, $x_2=3$, $x_3=1$ is a feasible solution of the equations

 $2x_1 + x_2 + 4x_3 = 11$ $3x_1 + x_2 + 5x_3 = 14$

Reduce the F.S to two B.F.S.

b) Find the optimal assignment and the optimal assisgnment cost from the following cost matrix: (4)

	M_1	M_2	M_3	M_4	M_5
\mathbf{J}_1	4	6	5	1	2
J_2	7	9	9	6	4
J_3	5	8	5	5	1
J_4	1	3	3	2	1
J_5	6	8	7	6	2

- c) What is the number of independent constraints in a balanced Transportation Problem . (2)
- 22. a) Prove that every extreme point of the convex set of all feasible solutions of the system $Ax = b, x \ge 0$ corresponds to a B.F.S. (7)
 - b) Solve the following Transportation problem:

	D_1	D_2	D_3	D_4	\mathbf{a}_i
O_1	6	1	9	3	70
O_2	11	5	2	8	55
O_3	10	12	4	7	70
bi	85	35	50	45	

Answer any one question from Question No. 23 to 24:

23. Solve the following L.P.P.by two phase method :

Maximize
$$z = 2x_1 + x_2 + x_3$$

Subject to $4x_1 + 6x_2 + 3x_3 \le 8$
 $3x_1 - 6x_2 - 4x_3 \le 1$
 $2x_1 + 3x_2 - 5x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

- 24. a) Formulate mathematically a balanced transportation problem as a L.P.P. having m origins and n destinations $(m, n \ge 2)$.
 - b) Find basic solutions with x_2 as one of the basic variable and discuss the nature of each solution of the following equations :

$$4x_1 + 2x_2 + 3x_3 - 8x_4 = 6$$

$$3x_1 + 5x_2 + 4x_3 - 6x_4 = 8$$
(2+2)

– × —

[2×12]

(6)

(5)

[1×6]

(6)

(2)